

Features

- Glass passivated junction chip.
- ♦ For surface mounted application
- ♦ Low forward voltage drop
- ♦ Low profile package
- Built-in stain relief, ideal for automatic placement
- ♦ Fast switching for high efficiency
- → High temperature soldering:
 260°C/10 seconds at terminals
- Plastic material used carries Underwriters Laboratory Classification 94V-0
- ♦ Green compound with suffix "G" on packing code & prefix "G" on datecode

Mechanical Data

♦ Cases: Molded plastic

 $\ \, \hbox{$\diamondsuit$ } \ \, \hbox{Terminal: Pure tin plated, lead free}$

♦ Polarity: Indicated by cathode band

♦ Packing: 12mm tape per EIA STD RS-481

♦ Weight: 0.064 grams

1.0AMP High Efficient Surface Mount Rectifiers

SMA/DO-214AC

Dimensions in inches and (millimeters)

Marking Diagram

HS1X = Specific Device Code
G = Green Compound

Y = Year

M = Work Month

Maximum Ratings and Electrical Characteristics

Rating at 25 °C ambient temperature unless otherwise specified.

Single phase, half wave, 60 Hz, resistive or inductive load.

For capacitive load, derate current by 20%

V _{RRM} V _{RMS}	1A 50 35	1B 100	1 D 200	1F	1G	1J	1K	1 M	
	35			300	400	600	800	1000	V
t t	00	70	140	210	280	420	560	700	V
V_{DC}	50	100	200	300	400	600	800	1000	V
I _{F(AV)}	1							Α	
I _{FSM}	30						Α		
V _F		1.0 1.			1.3	1.7			٧
I _R	5 50 150							uA	
Trr	50				75		nS		
Cj	20				15		pF		
$R_{\theta JA}$	70						°C/W		
T_J	- 55 to + 150						οС		
T _{STG}	- 55 to + 150						οС		
	I _{FSM} V _F I _R Trr Cj R _{0JA} T _J	I _{F(AV)} I _{FSM} V _F I _R Trr Cj R _{θ,JA} T _J	I _{F(AV)} I _{FSM} V _F 1 I _R Trr Cj R _{θJA} T _J	I _{F(AV)}	I _{F(AV)} I _{FSM} 3 V _F 1.0 I _R 5 15 Trr 50 Cj 20 R _{θ,JA} 7 T _J -55 to	I _{F(AV)} 1 I _{FSM} 30 V _F 1.0 1.3 I _R 5 50 150 150 Trr 50 50 Cj 20 70 T _J -55 to + 150	I _{F(AV)} 1 I _{FSM} 30 V _F 1.0 1.3 I _R 5 150 150 Trr 50 Cj 20 R _{BJA} 70 T _J -55 to + 150	I _{F(AV)} 1 I _{FSM} 30 V _F 1.0 1.3 1.7 I _R 5 50 150 150 Trr 50 75 Cj 20 15 R _{θJA} 70 T _J -55 to + 150	I _{F(AV)} 1 I _{FSM} 30 V _F 1.0 1.3 1.7 I _R 50 150 Trr 50 75 Cj 20 15 R _{θJA} 70 T _J -55 to + 150

Note 1: Pulse Test with PW=300 usec, 1% Duty Cycle

Note 2: Reverse Recovery Test Conditions: I_F=0.5A, I_R=1.0A, I_{RR}=0.25A

Note 3: Measured at 1 MHz and Applied Reverse Voltage of 4.0Volts.

RATINGS AND CHARACTERISTIC CURVES (HS1A THRU HS1M)

