Features - Glass passivated junction chip. - ♦ For surface mounted application - ♦ Low forward voltage drop - ♦ Low profile package - Built-in stain relief, ideal for automatic placement - ♦ Fast switching for high efficiency - → High temperature soldering: 260°C/10 seconds at terminals - Plastic material used carries Underwriters Laboratory Classification 94V-0 - ♦ Green compound with suffix "G" on packing code & prefix "G" on datecode ## Mechanical Data ♦ Cases: Molded plastic $\ \, \hbox{$\diamondsuit$ } \ \, \hbox{Terminal: Pure tin plated, lead free}$ ♦ Polarity: Indicated by cathode band ♦ Packing: 12mm tape per EIA STD RS-481 ♦ Weight: 0.064 grams # 1.0AMP High Efficient Surface Mount Rectifiers #### SMA/DO-214AC ## **Dimensions in inches and (millimeters)** ### **Marking Diagram** HS1X = Specific Device Code G = Green Compound Y = Year M = Work Month ## **Maximum Ratings and Electrical Characteristics** Rating at 25 °C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20% | V _{RRM}
V _{RMS} | 1A
50
35 | 1B 100 | 1 D
200 | 1F | 1G | 1J | 1K | 1 M | | |--------------------------------------|---|---|---|--------------------|--|--|---|--|--| | | 35 | | | 300 | 400 | 600 | 800 | 1000 | V | | t t | 00 | 70 | 140 | 210 | 280 | 420 | 560 | 700 | V | | V_{DC} | 50 | 100 | 200 | 300 | 400 | 600 | 800 | 1000 | V | | I _{F(AV)} | 1 | | | | | | | Α | | | I _{FSM} | 30 | | | | | | Α | | | | V _F | | 1.0 1. | | | 1.3 | 1.7 | | | ٧ | | I _R | 5
50
150 | | | | | | | uA | | | Trr | 50 | | | | 75 | | nS | | | | Cj | 20 | | | | 15 | | pF | | | | $R_{\theta JA}$ | 70 | | | | | | °C/W | | | | T_J | - 55 to + 150 | | | | | | οС | | | | T _{STG} | - 55 to + 150 | | | | | | οС | | | | | I _{FSM} V _F I _R Trr Cj R _{0JA} T _J | I _{F(AV)} I _{FSM} V _F I _R Trr Cj R _{θ,JA} T _J | I _{F(AV)} I _{FSM} V _F 1 I _R Trr Cj R _{θJA} T _J | I _{F(AV)} | I _{F(AV)} I _{FSM} 3 V _F 1.0 I _R 5 15 Trr 50 Cj 20 R _{θ,JA} 7 T _J -55 to | I _{F(AV)} 1 I _{FSM} 30 V _F 1.0 1.3 I _R 5 50 150 150 Trr 50 50 Cj 20 70 T _J -55 to + 150 | I _{F(AV)} 1 I _{FSM} 30 V _F 1.0 1.3 I _R 5 150 150 Trr 50 Cj 20 R _{BJA} 70 T _J -55 to + 150 | I _{F(AV)} 1 I _{FSM} 30 V _F 1.0 1.3 1.7 I _R 5 50 150 150 Trr 50 75 Cj 20 15 R _{θJA} 70 T _J -55 to + 150 | I _{F(AV)} 1 I _{FSM} 30 V _F 1.0 1.3 1.7 I _R 50 150 Trr 50 75 Cj 20 15 R _{θJA} 70 T _J -55 to + 150 | Note 1: Pulse Test with PW=300 usec, 1% Duty Cycle Note 2: Reverse Recovery Test Conditions: I_F=0.5A, I_R=1.0A, I_{RR}=0.25A Note 3: Measured at 1 MHz and Applied Reverse Voltage of 4.0Volts. #### RATINGS AND CHARACTERISTIC CURVES (HS1A THRU HS1M)